Copied to
clipboard

G = C42.447D4order 128 = 27

80th non-split extension by C42 of D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.447D4, C42.332C23, C4○D43Q8, C4(D4.Q8), C4(Q8.Q8), Q8.2(C2×Q8), D4.2(C2×Q8), C4(D42Q8), C4(D4⋊Q8), C4(Q8⋊Q8), C4(C4.Q16), Q8.Q853C2, D4.Q853C2, D4⋊Q848C2, D42Q846C2, C4.Q1648C2, Q8⋊Q848C2, C4⋊C4.39C23, C4.111(C4○D8), C4.27(C22×Q8), C4⋊C8.283C22, (C2×C4).274C24, (C2×C8).139C23, C23.386(C2×D4), (C22×C4).431D4, C4⋊Q8.260C22, (C2×D4).393C23, (C4×D4).315C22, C23.25D44C2, C4.124(C22⋊Q8), (C2×Q8).364C23, (C4×Q8).296C22, C2.D8.166C22, C4.Q8.147C22, (C22×C8).180C22, (C2×C42).820C22, C23.24D4.7C2, C22.534(C22×D4), C22.19(C22⋊Q8), D4⋊C4.158C22, C2.17(D8⋊C22), C23.37C232C2, (C22×C4).1544C23, Q8⋊C4.149C22, C42.C2.102C22, C42⋊C2.115C22, (C2×C4⋊C8)⋊29C2, C2.19(C2×C4○D8), C4.84(C2×C4○D4), (C2×C4)(Q8.Q8), (C2×C4)(Q8⋊Q8), (C2×C4)(C4.Q16), (C4×C4○D4).23C2, (C2×C4).322(C2×Q8), C2.55(C2×C22⋊Q8), (C2×C4).1435(C2×D4), (C2×C4).840(C4○D4), (C2×C4○D4).307C22, SmallGroup(128,1808)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.447D4
C1C2C4C2×C4C22×C4C2×C4○D4C4×C4○D4 — C42.447D4
C1C2C2×C4 — C42.447D4
C1C2×C4C2×C42 — C42.447D4
C1C2C2C2×C4 — C42.447D4

Generators and relations for C42.447D4
 G = < a,b,c,d | a4=b4=1, c4=b2, d2=a2, ab=ba, cac-1=dad-1=a-1, bc=cb, bd=db, dcd-1=a2b2c3 >

Subgroups: 324 in 194 conjugacy classes, 102 normal (44 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, D4⋊C4, Q8⋊C4, C4⋊C8, C4⋊C8, C4.Q8, C2.D8, C2×C42, C2×C42, C42⋊C2, C42⋊C2, C42⋊C2, C4×D4, C4×D4, C4×Q8, C4×Q8, C22⋊Q8, C42.C2, C4⋊Q8, C22×C8, C2×C4○D4, C23.24D4, C2×C4⋊C8, C23.25D4, D4⋊Q8, Q8⋊Q8, D42Q8, C4.Q16, D4.Q8, Q8.Q8, C4×C4○D4, C23.37C23, C42.447D4
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C24, C22⋊Q8, C4○D8, C22×D4, C22×Q8, C2×C4○D4, C2×C22⋊Q8, C2×C4○D8, D8⋊C22, C42.447D4

Smallest permutation representation of C42.447D4
On 64 points
Generators in S64
(1 55 41 63)(2 64 42 56)(3 49 43 57)(4 58 44 50)(5 51 45 59)(6 60 46 52)(7 53 47 61)(8 62 48 54)(9 27 36 21)(10 22 37 28)(11 29 38 23)(12 24 39 30)(13 31 40 17)(14 18 33 32)(15 25 34 19)(16 20 35 26)
(1 26 5 30)(2 27 6 31)(3 28 7 32)(4 29 8 25)(9 52 13 56)(10 53 14 49)(11 54 15 50)(12 55 16 51)(17 42 21 46)(18 43 22 47)(19 44 23 48)(20 45 24 41)(33 57 37 61)(34 58 38 62)(35 59 39 63)(36 60 40 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 48 41 8)(2 7 42 47)(3 46 43 6)(4 5 44 45)(9 14 36 33)(10 40 37 13)(11 12 38 39)(15 16 34 35)(17 22 31 28)(18 27 32 21)(19 20 25 26)(23 24 29 30)(49 60 57 52)(50 51 58 59)(53 64 61 56)(54 55 62 63)

G:=sub<Sym(64)| (1,55,41,63)(2,64,42,56)(3,49,43,57)(4,58,44,50)(5,51,45,59)(6,60,46,52)(7,53,47,61)(8,62,48,54)(9,27,36,21)(10,22,37,28)(11,29,38,23)(12,24,39,30)(13,31,40,17)(14,18,33,32)(15,25,34,19)(16,20,35,26), (1,26,5,30)(2,27,6,31)(3,28,7,32)(4,29,8,25)(9,52,13,56)(10,53,14,49)(11,54,15,50)(12,55,16,51)(17,42,21,46)(18,43,22,47)(19,44,23,48)(20,45,24,41)(33,57,37,61)(34,58,38,62)(35,59,39,63)(36,60,40,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,48,41,8)(2,7,42,47)(3,46,43,6)(4,5,44,45)(9,14,36,33)(10,40,37,13)(11,12,38,39)(15,16,34,35)(17,22,31,28)(18,27,32,21)(19,20,25,26)(23,24,29,30)(49,60,57,52)(50,51,58,59)(53,64,61,56)(54,55,62,63)>;

G:=Group( (1,55,41,63)(2,64,42,56)(3,49,43,57)(4,58,44,50)(5,51,45,59)(6,60,46,52)(7,53,47,61)(8,62,48,54)(9,27,36,21)(10,22,37,28)(11,29,38,23)(12,24,39,30)(13,31,40,17)(14,18,33,32)(15,25,34,19)(16,20,35,26), (1,26,5,30)(2,27,6,31)(3,28,7,32)(4,29,8,25)(9,52,13,56)(10,53,14,49)(11,54,15,50)(12,55,16,51)(17,42,21,46)(18,43,22,47)(19,44,23,48)(20,45,24,41)(33,57,37,61)(34,58,38,62)(35,59,39,63)(36,60,40,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,48,41,8)(2,7,42,47)(3,46,43,6)(4,5,44,45)(9,14,36,33)(10,40,37,13)(11,12,38,39)(15,16,34,35)(17,22,31,28)(18,27,32,21)(19,20,25,26)(23,24,29,30)(49,60,57,52)(50,51,58,59)(53,64,61,56)(54,55,62,63) );

G=PermutationGroup([[(1,55,41,63),(2,64,42,56),(3,49,43,57),(4,58,44,50),(5,51,45,59),(6,60,46,52),(7,53,47,61),(8,62,48,54),(9,27,36,21),(10,22,37,28),(11,29,38,23),(12,24,39,30),(13,31,40,17),(14,18,33,32),(15,25,34,19),(16,20,35,26)], [(1,26,5,30),(2,27,6,31),(3,28,7,32),(4,29,8,25),(9,52,13,56),(10,53,14,49),(11,54,15,50),(12,55,16,51),(17,42,21,46),(18,43,22,47),(19,44,23,48),(20,45,24,41),(33,57,37,61),(34,58,38,62),(35,59,39,63),(36,60,40,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,48,41,8),(2,7,42,47),(3,46,43,6),(4,5,44,45),(9,14,36,33),(10,40,37,13),(11,12,38,39),(15,16,34,35),(17,22,31,28),(18,27,32,21),(19,20,25,26),(23,24,29,30),(49,60,57,52),(50,51,58,59),(53,64,61,56),(54,55,62,63)]])

38 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E···4J4K···4R4S4T4U4V8A···8H
order1222222244444···44···444448···8
size1111224411112···24···488884···4

38 irreducible representations

dim111111111111222224
type++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D4Q8C4○D4C4○D8D8⋊C22
kernelC42.447D4C23.24D4C2×C4⋊C8C23.25D4D4⋊Q8Q8⋊Q8D42Q8C4.Q16D4.Q8Q8.Q8C4×C4○D4C23.37C23C42C22×C4C4○D4C2×C4C4C2
# reps121211112211224482

Matrix representation of C42.447D4 in GL4(𝔽17) generated by

1000
0100
0001
00160
,
4000
0400
0010
0001
,
31400
3300
001016
00167
,
31400
141400
001016
00167
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,0,16,0,0,1,0],[4,0,0,0,0,4,0,0,0,0,1,0,0,0,0,1],[3,3,0,0,14,3,0,0,0,0,10,16,0,0,16,7],[3,14,0,0,14,14,0,0,0,0,10,16,0,0,16,7] >;

C42.447D4 in GAP, Magma, Sage, TeX

C_4^2._{447}D_4
% in TeX

G:=Group("C4^2.447D4");
// GroupNames label

G:=SmallGroup(128,1808);
// by ID

G=gap.SmallGroup(128,1808);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,112,253,120,758,248,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=b^2,d^2=a^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,b*c=c*b,b*d=d*b,d*c*d^-1=a^2*b^2*c^3>;
// generators/relations

׿
×
𝔽